15.7 INFINITE SERIES OF FUNCTIONS

We now consider series whose terms are functions defined in some set S. Let

$$f_1 + f_2 + \dots + f_n + \dots$$

be such a series. We write

$$S_n(x) = f_1 + f_2 + \dots + f_n$$

so that $\{S_n(x)\}\$ is a sequence of functions.

We say that the series is point-wise convergent if the sequence $\{S_n(x)\}$ is point-wise the sequence $\{S_n(x)\}$ is point-wise. we say that the series is said to be uniformly convergent, if the sequence $\{S_n(x)\}$ is uniformly convergent. convergent. Also, the point-wise limit or the uniform limit of $\{S_n(x)\}$ as the case may be is said be the point-wise sum or the uniform sum of the series and is denoted by S(x).

15.8 TEST FOR THE UNIFORM CONVERGENCE OF A SERIES

15.8.1 Cauchy's General Principle of Convergence

The necessary and sufficient condition for the uniform convergence in [a, b] of a series [a, b]is that to every positive number, ε , there corresponds a positive integer m such that $\forall n \ge m$ $\forall x \in [a,b],$

$$\left| f_{n+1}(x) + f_{n+2}(x) + ... + f_{n+p}(x) \right| < \varepsilon.$$

This result is an immediate consequence of the corresponding result for sequences proved Art. 15.2.

15.8.2. Weierstrass's M-test for Uniform Convergence

(Meerut 2006, 08, 09; Kanpur 2007, 09; Agra 2007; Delhi Maths (Prog) 10 **Theorem.** A series $\sum f_n$ will converge uniformly in [a, b], if there exists a convergent sent $\sum M_n$ of positive numbers such that $\forall x \in [a,b]$,

$$\left|f_n(x)\right| \leq M_n$$

proof. Let ε be a positive number. Since ΣM_n is convergent, there exists a positive integer

m such that

$$\left| M_{n+1} + M_{n+1} + \dots + M_{n+p} \right| < \varepsilon, \ \forall \ n \ge m \ \text{ and } \ \forall \ p \ge 0.$$
that
$$\lim_{n \to \infty} \left| \int_{-\infty}^{\infty} dx \, dx \, dx \right| = \int_{-\infty}^{\infty} dx \, dx$$
... (i)

$$|f_n(x)| \le M_n \,\forall \, x \in [a,b] \qquad \dots (ii)$$

From (i) and (ii), we see that

 $\forall x \in [a, b], \forall n \ge m \text{ and } p \ge 0,$

$$\left| f_{n+1}(x) + f_{n+2}(x) + \dots + f_{n+p}(x) \right| \le \left[M_{n+1} + M_{n+2} + \dots + M_{n+p} \right] < \varepsilon.$$

Hence Σf_n is uniformly convergent in [a, b]

EXAMPLES

Ex. 1. Show that the following series are uniformly convergent for real values of x:

(i)
$$\sum_{n=1}^{\infty} \frac{\sin n x}{n^p}$$
, $p > 1$ (1.A.S. 1998); $\sum_{n=1}^{\infty} \frac{\cos nx}{n^4}$, $x \in R$ (Delhi B.Sc. (Prog.) 2008)

(ii)
$$\sum_{n=1}^{\infty} \frac{\cos n x}{n^2}$$
 (Kanpur 2005; Meerut 2009) (iii) $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$ (Delhi Maths (H) 2001)

(iv)
$$\sum_{n=1}^{\infty} \frac{\sin(x^2 + nx^2)}{n(n+1)}$$
 (Delhi Maths (H) 2001)

Sol. (i) Here, $f_n(x) = (\sin nx) / n^p$ and so

$$|f_n(x)| = \left|\frac{\sin nx}{n^p}\right| = \frac{|\sin nx|}{n^p} \le \frac{1}{n^p} = M_n, \text{ say } \forall x \in R$$

Since $\sum_{n=1}^{\infty} M_n = \sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent for p > 1, so by Weierstrass's M test, the given series converges uniformly for all real values of x.

(ii) and (iii). Left as exercises for the reader.

(iv) Here $f_n(x) = {\sin (x^2 + nx^2)}/{n(n+1)}$

$$|f_n(x)| = \left| \frac{\sin(x^2 + nx^2)}{n(n+1)} \right| = \frac{|\sin(x^2 + nx^2)}{n^2(1+1/n^2)} \le \frac{1}{n^2} = M_n \text{ for } \forall x \in \mathbb{R}$$

Since $\sum_{n=1}^{\infty} M_n = \sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent, so by Weierstrass's M-test, the given series is uniformly

convergent for all real values of x.

(Kanpur 2007) Ex. 2. Show that the series $\sum_{n=1}^{\infty} \frac{x}{n(1+nx^2)}$ converges.

(Agra 1998, 99, 2001); Delhi Maths (H) 2000; Delhi B.Sc. Physics (H) 1997, 98)

Sol. Here

$$\frac{df_n(x)}{dx} = \frac{1}{n} \cdot \frac{(1 + nx^2) \cdot 1 - x \cdot 2nx}{(1 + nx^2)^2} = \frac{1 - nx^2}{n(1 + nx^2)^2} \qquad ...(2)$$

 $d f_n(x)/dx = 0$ For max, or min,

From (2),
$$\frac{d^2 f_n(x)}{dx^2} = \frac{1}{n} \times \frac{(1 + nx^2)^2 \cdot (-2nx) - (1 - nx^2) \cdot 2(1 + nx^2) \cdot 2nx}{(1 + nx^2)^4}$$

$$d^2 f_n(x) = 2x\{(1 + nx^2) + 2(1 - nx^2)\} \quad \text{and} \quad \left[d^2 f_n(x)\right]$$

$$\frac{d^2 f_n(x)}{dx^2} = -\frac{2x\{(1+nx^2) + 2(1-nx^2)\}}{(1+nx^2)^3} \quad \text{and} \quad \left[\frac{d^2 f_n(x)}{dx^2}\right]_{x=1/\sqrt{n}} = -\frac{1}{2\sqrt{n}} < 0,$$

showing that $f_n(x)$ is maximum at $x = 1\sqrt{n}$ and the maximum value of $f_n(x)$ from (1) is

$$\frac{1/\sqrt{n}}{n(1+1)}$$
, i.e., $\frac{1}{2n^{3/2}}$

Henc'

$$|f_n(x)| \le \frac{1}{2n^{3/2}} < \frac{1}{n^{3/2}} = M_n$$
, say

Since $\sum_{n=1}^{\infty} M_n = \sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ is conversent, so by Weierstrass's M-test, the given series is uniform convergent for all real values of x.